

Systemic but not intra-articular infusion of human adipose-derived mesenchymal stromal cells (hAD-MSCs) attenuates acute arthritis flare in a rabbit model.

INSTITUTO DE

INVESTIGACIÓN

SANITARIA

FUNDACIÓN JIMÉNEZ DÍAZ

Medina JP*¹, Bermejo Álvarez I¹, Yáñez R², Fernández-García M², García-Olmo D³, Bueren J², Herrero-Beaumont G¹, Largo R¹. ¹Bone and Joint Research Unit, Rheumatology Department, IIS-Fundación Jiménez Díaz, Madrid, Spain ²Hematopoietic Innovative Therapies Division. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), Madrid, Spain. IIS- Fundación Jiménez Díaz UAM, Madrid, Spain ³New Therapies Laboratory, IIS-Fundación Jiménez Díaz UAM, Madrid, Spain. Department of Surgery, Fundación Jiménez Díaz University Hospital, Madrid, Spain. Department of Surgery, School of Medicine UAM, Madrid, Spain.

BACKGROUND

Scarce data exist on the effect of mesenchymal stromal cell (MSC) as a therapy in acute joint inflammation. Dosing and rout of administration are essential factors to achieve a positive therapeutic outcome. Therefore, we aimed to compare different local intra-articular (IA) doses with a systemic infusion of MSCs to evaluate their anti-inflammatory effect in a model of acute gouty arthritis.

1 Effect of systemic and local administration of hAD-MSCs in MSU crystal-induced arthritis model.

METHODS

 Gouty arthritis was induced in New Zealand white rabbits by IA injection of MSU crystals (50mg) in each knee. Controls

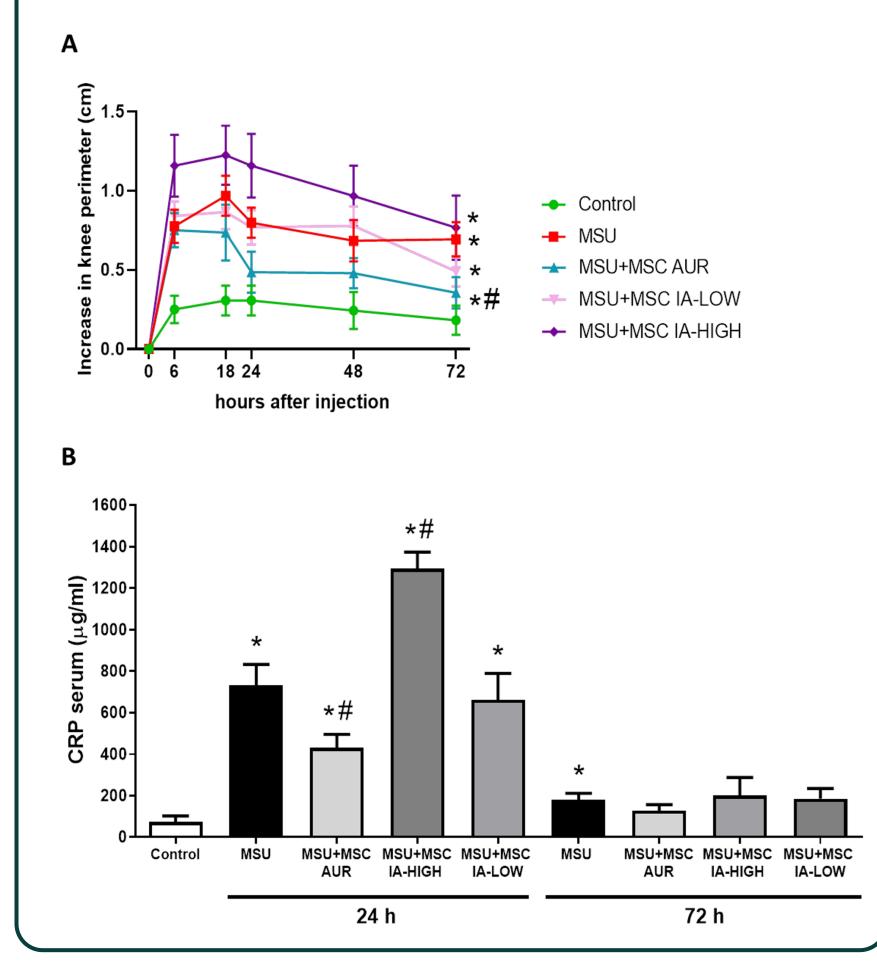
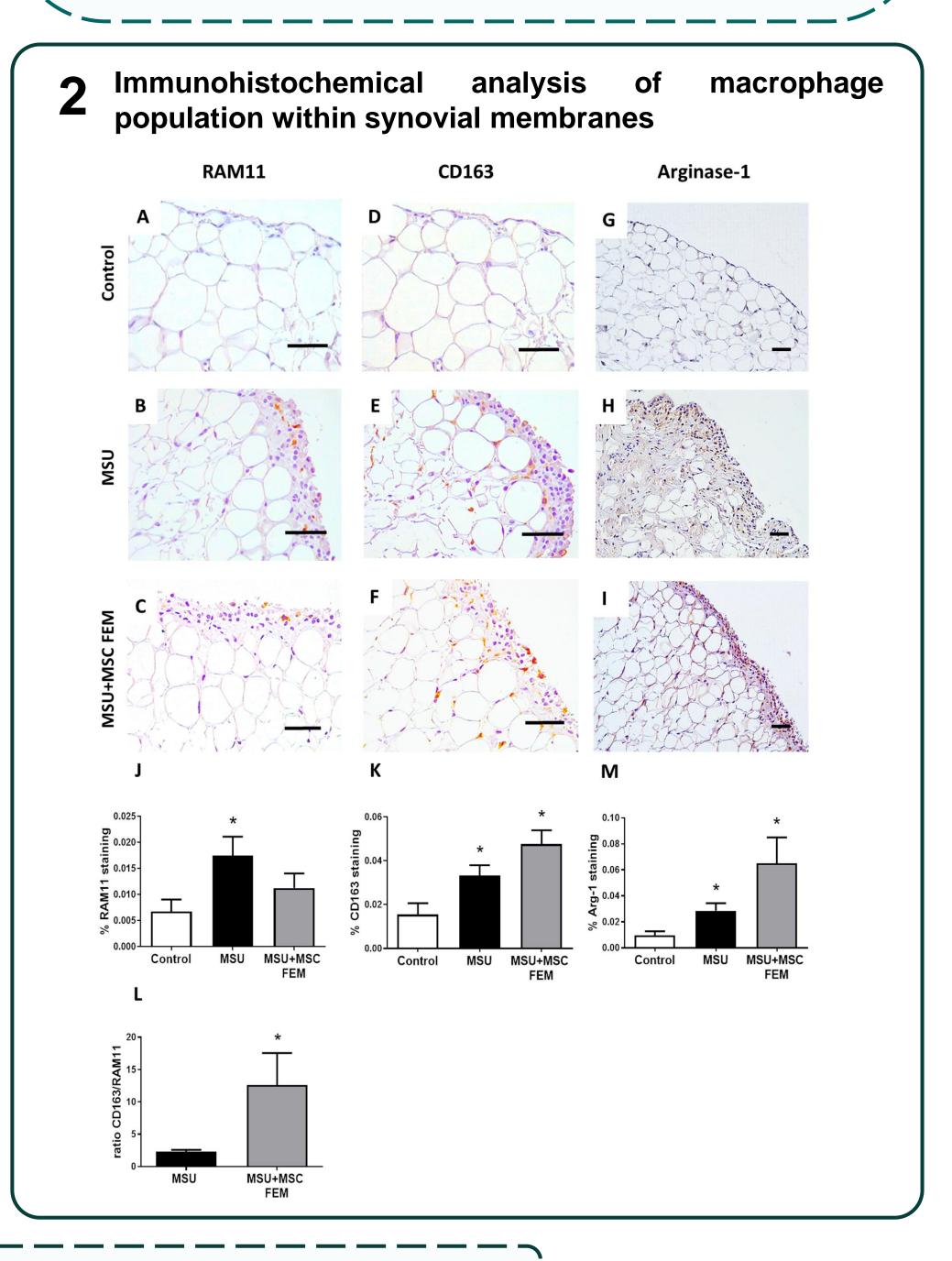



Figure 1. Systemic administration of hAD-MSC through the right auricular artery, but not local injection into the arthritic knee attenuates knee synovitis. A, joint swelling evolution of each limb during 72 h after MSU crystal injection, comparing different administration routes and doses. Bars show the mean and SEM (n = 10 for control, n = 22 for MSU, n = 18 for MSU+MSC AUR group, n = 6 for MSU+MSC IA-HIGH group, n = 16 for MSU+MSC IA-LOW group). Two-way ANOVA for the comparison between groups, *p<0.05 vs. Control, #p<0.05 vs. MSU. B, serum CRP concentration

- received PBS instead.
- Systemically-treated rabbits (MSU+MSC AUR) received a single clinical-adjusted dose of 2x10⁶ hAD-MSCs/kg through the auricular artery.
- Two different IA doses of MSC were tested: Same dose as the systemic approach 10⁶ MSC/kg (MSU+MSC IA-HIGH). Another group received a lower dose of 2.5x10⁵ MSC/kg (MSU+MSC IA-LOW) in each knee.
- Inflammation was followed up measuring knee swelling and serum C-Reactive Protein. Animals were sacrificed 72h after injury for histological studies in the synovium.

levels of each rabbit at 24 h and 72 h of study. Bars show the mean and SEM (n = 5 for control, n = 10 for MSU, n = 9 for MSU+MSC AUR group, n = 3 for MSU+MSC IA-HIGH group, n = 8 for MSU+MSC IA-LOW group). Mann-Whitney test, *p<0.05 vs. Control, #p<0.05 vs. MSU.

Figure 2. Systemic administration of hAD-MSCs promotes M" macrophage polarization in synovial membranes 72 hours after insult. Representative sections of RAM11 antigen staining (A-C) in the synovium of control (A), MSU and (B) and MSU+MSC FEM (C) groups; CD163 staining (D-F) in control (D), MSU and (E) and MSU+MSC FEM (F) groups; and arginase-1 staining (G-I) in control (G), MSU and (H) and MSU+MSC FEM (I) groups, scale bars = 50 μ m. Densitometric analysis of RAM11 (J), CD163 (K), Arginase-1 (M) staining percentage in the synovium of each group. L, ratio of CD163 to RAM11 positive staining. Bars show the mean and SEM (n = 7 – 8 for controls, n = 14 for MSU and n = 9 – 12 for MSU+MSC FEM group). Mann-Whitney test, *p<0.05 vs. Control, #p<0.05 vs. MSU.

CONCLUSIONS

A single systemic dose of hAD-MSCs, but not IA administration, was able to attenuate the intensity and duration of the inflammatory response, favoring polarization of synovial macrophages to an anti-inflammatory phenotype. PIE15/00048

UNION EUROPE

it

Instituto de Salud

MINISTERIO DE CIENCIA

INNOVACIÓ